[Paper] Very Deep Convolutional Networks for Large-Scale Image Recognition
“Very Deep Convolutional Networks for Large-Scale Image Recognition”이란 논문에 대한 리뷰입니다.
원문은 링크에서 확인할 수 있습니다.
Key
3*3 Convolution Filter with deep network
Pre-process
- Subtracting mean
Architecture:
- Convolution Layer :3*3 Filter / stride 1 / channel a factor of 2
- Maxpool Layer: 2*2 Filter with stride 2 (not all layer)
- ReLU for all hidden layer
- NO Normalization Layer
Config
- Mini-batch: 256 batch size / 0.9 momentum / 5e-4 weight decay / 1e-2 learning rate
- Dropout on FC layer with 0.5
- Learning rate scheduler: decrease by 10 when validation not improving
Insight
- Two 33 layer ~ Single 55 layer / Three 33 layer ~ Single 77 layer
- Make decision function more discriminative
- Less parameters imposing a regularization on large filter
- Less epoch
- Due to greater depth and small convolution layers
- Pre-initialization(NO NEED, Glorot & Bengio(2010))
댓글남기기