[Lecture Summary] Measure Theory : MA 813 of IIT Bombay, MIT 18.125
This contents is based on Lecture of MATH 813 of IIT Bombay(link) and MIT 18.125(link)
- Lecture 1 : Measurability
- Contents
- Prelimienary
- $\sigma-$algebra
- Measurable set, space, function
- Composition property
- Borel set
- With sequence of function
- Notion Link
- Contents
- Lecture 2 : Abstract & Axiomatic version of Lebesgue integral
- Contents
- Simple function
- Measure spae
- Lebesgue Integral
- Radon-Nikodym theorem
- Notion Link
- Contents
- Lecture 3 : MCT, DCT
- Contents
- Monotonic Convergence Theorem
- Fatous’ Lemma
- Absolutely Continuous Measures
- $L^1$ space
- Dominated Convergence theorem
- Notion Link
- Contents
- Lecture 4 : Measure zero
- Contents
- Almost Everywhere
- Completion
- Corollary of DCT
- Avergage measure on finite space
- Borel-Cantelli Lemma
- Notion Link
- Contents
- Lecture 5: Key concepts from Topology
- Contents
- Compact space, Locally compact
- Hausdorff and Uryshon’s Lemma
- Semi-continuous
- Notion Link
- Contents
- Lecture 6~10 : RRT Proof
- Contents
- Preliminary Notion Link
- Stepwise proof Notion Link
댓글남기기