최대 1 분 소요

This contents is based on Lecture of MATH 813 of IIT Bombay(link) and MIT 18.125(link)

  • Lecture 1 : Measurability
    • Contents
      • Prelimienary
      • $\sigma-$algebra
      • Measurable set, space, function
      • Composition property
      • Borel set
      • With sequence of function
    • Notion Link
  • Lecture 2 : Abstract & Axiomatic version of Lebesgue integral
    • Contents
      • Simple function
      • Measure spae
      • Lebesgue Integral
      • Radon-Nikodym theorem
    • Notion Link
  • Lecture 3 : MCT, DCT
    • Contents
      • Monotonic Convergence Theorem
      • Fatous’ Lemma
      • Absolutely Continuous Measures
      • $L^1$ space
      • Dominated Convergence theorem
    • Notion Link
  • Lecture 4 : Measure zero
    • Contents
      • Almost Everywhere
      • Completion
      • Corollary of DCT
      • Avergage measure on finite space
      • Borel-Cantelli Lemma
    • Notion Link
  • Lecture 5: Key concepts from Topology
    • Contents
      • Compact space, Locally compact
      • Hausdorff and Uryshon’s Lemma
      • Semi-continuous
      • Notion Link
  • Lecture 6~10 : RRT Proof
  • Contents

댓글남기기