[Paper] A survey of transfer learnings
“A survey of transfer learning”이란 논문에 대한 리뷰입니다.
원문은 링크에서 확인할 수 있습니다.
Terminology
Feature space Χ / Label space Y Predictive Function f(∙)=P(Y│X) Domain D={Χ,P(Χ)} Task Τ={Y,f(∙)}
Source | Target | |
---|---|---|
Domain | $X_{S},P(X_{S})$ | $X_{T},P(X_{T})$ |
Domain data | $D_S={(x_{S1},y_{S1} ),…,} $ | D_T={(x_{T1},y_{T1}),…,} |
Task | $Y_{S},f_{S}(∙)$ | $Y_{T},f_{T}(∙)$ |
Definition
improving target predictive function using source domain data & target domain data.
- X, P(X)가 달라서 생기는 문제로 귀결된다.
- Domain Adaptation이라는 것과 혼용되지만 이건 source domain을 target domain과 비슷하게 만드는 방식이다.
Taxonomy
|Feature Space Homogeneous| Heterogeneous| |:—:|:—:| |Predictive Function|Mismatch in the conditional prob| |Label Space|Mismatch in the class space| |P(Y) | Caused by labelled and unlabelled|
Bias
||| |:—:|:—:| |Frequency feature bias |P(X_S )≠P(X_T )| |Context Feature bias |$P(Y_{S}|X_{S})≠P(Y_{T}|X_{T}})$|
Generic Solution
||| |:—:|:—:| |Homogeneous | Correct marginal and/or conditional| |Heterogeneous |(Same domain distribution) Align Input space| || (Different domain distribution) domain adaptation|
General Strategy
|||
|:—:|:—:|
|Information transfer|(Through Instances) reweight source domain to correct marginal
-> Conditional is the same|
|Information transfer|(Through features) (Asymmetric transformation) Transform features through reweighting|
|Information transfer| (Symmetric transformation)Find common latent feature space|
|Information transfer|(Through Parameter, Ensemble learning) multiple source learners |
|Information transfer|Transfer based on some defined relationship(least)|
Generic solution + General strategy Methodology
댓글남기기