[Paper] A Survey on Deep Transfer Learning
“A Survey on Deep Transfer Learning”이란 논문에 대한 리뷰입니다.
원문은 링크에서 확인할 수 있습니다.
Definition
learning task is a non-linear function that reflected a deep neural network.
Category
- Iance-based methodology
- Utilize instances in source domain by appropriate weight
Specific weight adjustment and select partial instances from source domain
Assumption: partial can be utilized with appropriate weights
TrAdaBoost: use AdaBoost to filter out and reweight them for classification Bi-weighting Domain Adaptation (BIW): align feature spaces and assign weight
- Mapping-based methodology
- Mapping instances from two domains into a new data space with better similarity
Transfer component analysis (TCA) : MMD라는 loss를 추가하고, 이는 두 domain distribution의 차이를 줄여주는 term이다.
- Network-based methodology
- Reuse the partial of network pre-trained in the source domain
Network structure와 connection을 target domain의 model로 일부 붙이는 것
Assumption: Feature extractor가 따로 있고 extracted feature는 versatile하다
특히 network structure와 transferability간 관계가 중요한데, transfer하기에 용이한 network가 있다는 것이고, LeNet, AlexNet, VGG, ResNet 같은 것들이 이에 해당한다.
- Adversarial-based methodology
- Use adversarial technology to find transferable features that both suitable
Use GAN to find transferable representations that is applicable to both.
Assumption: good representation is discriminative for the task but indiscriminative for domain.
Domain Adaptation이 많이 보인다. 그래서 GAN이기도 한 것 같다.
Domain adaptation regularization loss term Augmentation with few standard layers and a simple gradient reversal layer
댓글남기기