최대 1 분 소요

This is a collection of recent approaches and papers about Efficient ML including Parameter Efficient Fine Tuning(PEFT), qunatization, pruning and other topics.

PEFT

  • MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning(arxiv)
  • LayerNorm: A key component in parameter-efficient fine-tuning(arxiv)
  • ReFT: Representation Finetuning for Language Models(arxiv)
  • LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning(arxiv)
  • GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection(arxiv)
  • LORAPRUNE: PRUNING MEETS LOW-RANK PARAMETER-EFFICIENT FINE-TUNING(openreview)
  • LoRA+: Efficient Low Rank Adaptation of Large Models(arxiv)

Quantization

  • Cherry on Top: Parameter Heterogeneity and Quantization in Large Language Models(arxiv)
  • QLoRA: Efficient Finetuning of Quantized LLMs(arixv)

Pruning

  • Random Search as a Baseline for Sparse Neural Network Architecture Search(arxiv)
  • The Heuristic Core: Understanding Subnetwork Generalization in Pretrained Language Models(arxiv)

댓글남기기