[Lecture Summary] 04 Real Anaysis : Series
This contents is based on Lecture of 18.100A of MIT Open Course. Coverage will be Lecture from 4~. link
Definition and Symbols
Series
- partial sum $s_m$. If $\limit s_m= s$ then we can treat it asa number
- Given sequence $x_n$, $\sum_{n=1}^{\infty} which is associated to $x_n$.
- If sequence $\lbrace s_m = \sum_{n=1}^{\infty} x_n\rbrace_{m=1}^{\infty}$ converges then series converges either!
- (RMK) Do not ahve to start seriest at $n=1$
Cauchy series
- sequence of partial sumis Cauchy
Absolutely convergence
- If $\sum \lvert x_n \rvert$ converges then $\sum x_n$ converges absolutely
- prove it via induction
Questions to be solved
- Does $\limit x_n= 0$ implies $\sum x_n$ converges?
Theorem
If $\lvert r\rvert then \sum r^n$ converges and $\sum r^n= {1\over 1-r}$
Approach
- From definition via induction
Remark Series of the form from the above is called geometric series.
For sequence $x_n$ and $M\in\mathbb{N}$, $\sum_{n=1} x_n$ converges $\iff \sum_{n=M} x_n$ converges
$\sum x_n$ is Cauchy $\iff \sum x_n$ is convergent
Remark
- For sequence, the above relation is false.
$\sum x_n$ is Cauchy $\iff \forall \epsilon >0, \exists M\in\mathbb{N} s.t. \forall m\ge M and l>m, \lvert \sum_{n=m+1}^l x_n\rvert < \epsilon$
Remark
- Convergence(or Cauchu) of series depends on the tail of series
If $\sum x_n$$ converges then $\limit x_n=0$
$\sum {1\over n} does not converge
Approach
- Find the minimum of fraction of series.
- Then the minimum is unbounded!
Remark
- Series $\sum {1\over n} $ is called harmonic series
If $\forall n\in\mathbb{N}\ge 0$ then $\sum x_n$ convergence $\iff s_m$ is bounded.
$\sum x_n$ convergences absolutely then $\sum$ converges either.
Approach
- $\sum x_n$ is cauchy!
Remark
- $\sum {(-1)^n\over n}$ is convergent but not absolutely convergent!
(Comparison Test) $\forall n\in\mathbb{N}, 0\lex\ley$, If $\sum y_n$ converges then $\sum x_n$ converges!
(Comparison Test) $\forall n\in\mathbb{N}, 0\lex\ley$, If $\sum x_n$ duverges then $\sum y_n$ diverges!
For $p \in \mathbb{R}$, series $\sum {1\over n^p}$ converges $\iff p>1$
Approach
- Contradiction and Comparison Test!
(Ratio Test) Suppose $x_n \ne 0 \forall n$ and $L=\lim {\lvert x_{n+1}\over x_n}$ exist then if $L<1$,then $\sum x_n$ converges absolutely.
(Ratio Test) Suppose $x_n \ne 0 \forall n$ and $L=\lim {\lvert x_{n+1}\over x_n}$ exist then if $L>1$,then $\sum x_n$ diverges
Remark
- No inference for $L=1$
(Root test) Let $\sum x_n$ s.t. $L=\lim \lvert x_n\rvert^{1/n}. Then if $L<1$ then $\sum x_n$ converges absolutely
(Root test) Let $\sum x_n$ s.t. $L=\lim \lvert x_n\rvert^{1/n}. Then if $L>1$ then $\sum x_n$ diverges
(Alternating Sereis test) %x_n$ is a monotone decreasing sequence s.t. $x_n\to 0$. Then $\sum (-1)^n x_n$ converges
댓글남기기